FAROOQ HIGH SCHOOL FOR GIRLS

I Semester Exam – October 2019

Subject: Geometry

Time: 2 Hrs Marks: 40

38

Date: 14/10/19

Std: XA

- Q.1 (A) Solve the following questions. (Any four)
- 1) In right angled \triangle ABC, BD \perp AC. If AD = 4, DC = 9, Then find BD.

2) In figure, ray PQ touches the circle at Point Q. PQ = 12, PR = 8, find PS.

- 3) Draw a circle at radius 3.6 cm. Draw a tangent to the circle at any point on it without using the circle.
- 4) If two circles with radius 8 cm and 3 cm respectively, touch internally then find the distance between their centers.
- 5) $\triangle DEF \sim \triangle MNK$, if DE = 5, MN = 6 then find the value of $\frac{A(\triangle DEF)}{A(\triangle MNK)}$
- Q.1 (B) Solve the following questions. (Any two)

[4]

1) Seg NQ is the bisector of \angle N of \triangle MNP if MN = 5, PN = 7, MQ = 2.5 then find QP.

2) In the adjoining figure circle with centre D
touches the sides of ∠ACB at A and B.
If ∠ACB = 52° find measure of ∠ADB.

3) In the adjoining fig. In $\triangle ABC \angle B = 90^{\circ}$, $\angle A = 30^{\circ}$, AC = 14 then find AB and BC.

$O_2(A)$	Choose the	correct	alternative.

- 1) In $\triangle ABC \sim \triangle PQR$ and $4A(\triangle ABC) = 25A(\triangle PQR)$ then AB:PQ = ?
 - (A) 4:25
- (B) 2:5
- (C) 5:2
- (D) 25:4
- 2) \angle A B is inscribed in arc ACB of a circle with centre O. if \angle ACB = 65° find m(arc ACB).
 - (A) 65°
- (B) 130°
- (C) 295°
- (D) 230°

- 3) $\sin\theta \times \csc\theta = ?$
 - $(A)\sqrt{2}$
- (B) $\frac{1}{2}$
- (C) 0
- (D) 1
- 4) Out of the following which is a Pythagorean triplet?
 - (A)(5,12,14) (B) (3,4,2)
- (C)(8,15,17)
- (D) (5,5,2)
- Q.2 (B) Solve the following questions. (Any two)

- 1) Draw a circle of radius 3.3 cm. Draw a chord PQ of length 6.6 cm. Draw tangents to the circle at point P and Q. Write your observation about the tangents.
- 2) \square MRPN is cyclic, $\angle R = (5x 13)^\circ$, $\angle N = (4x + 4)^\circ$. Find measures of $\angle R$ and $\angle N$.
- 3) Ratio of corresponding sides of two similar triangles is 2:5. If the area of the smaller triangle is 64 cm² then what is the area of the bigger triangle.
- O.3 (A) Complete the following activities.

[8]

1) Prove that angles inscribed in the same arc are congruent.

Given ∠PQR and ∠PSR are inscribed in the same arc.

Arc PXR is intercepted by the angles.

To prove: $\angle PQR \cong \angle PSR$

Proof: $m\angle PQR = \frac{1}{2} m (arc PXR)$ ---- I [

$$m \angle \square = m \angle PSR$$
 ---- From I and II

 $\angle PQR \cong \angle PSR$ (Angles equal in measure are congruent.)

2) In the above figure line AB || line CD || line EF,

line L and line m are its transversals.

If AC = 6, CE=9, BD = 8 then complete

the following activity to find DF.

$$DF = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

3) In the adjoining figure O is the centre of the circle. \angle ABC is inscribed in arc ABC and \angle ABC = 65°. Complete the following activity to find the measure of \angle AOC.

4) In ΔABC, ray BD bisects ∠ABC seg ED || side BC.

Then prove that $\frac{AB}{BC} = \frac{AE}{EB}$

Proof: In ∆ABC, ray BD bisects ∠ABC

$$\frac{AB}{BC} = \begin{bmatrix} --- & I & \begin{bmatrix} --- & I & \end{bmatrix} \end{bmatrix}$$

In ΔABC, seg ED || side BC

$$\frac{AE}{EB} = \frac{AD}{DC} - II$$

$$\frac{AB}{\Box} = \frac{\Box}{EB}$$
 ---- From I and II

- Q.4 Solve the following questions. (Any three)
- 1) Draw a circle with radius 4.2 cm. Construct tangents to the circle from a point at a distance of 7 cm from the centre.

- 3) If $\cot \theta = \frac{40}{9}$ find the values of $\cos \theta$, $\csc \theta$ and $\sin \theta$.
- 4) In figure m(arc WY)= 44° , m(arc ZX) = 68° then find:

(iii) If WX = 25, YT = 8, YZ = 26. Find WT.

Q.5 Solve the following questions. (Any one)

[4]

- 1) Prove that: In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of remaining two sides.
- 2) Prove that: The sum of the squares of the diagonal of a parallelogram is equal to the sum of the squares of its sides.
- Q.5 Solve the following questions. (Any one)

[3]

- 1) $\triangle RST \sim \triangle XYZ$, In $\triangle RST$ RS= 4.5 cm, $\angle RST = 40^{\circ}$, ST = 5.7 cm. Construct $\triangle RST$ and $\triangle XYZ$ such that $\frac{RS}{XY} = \frac{3}{5}$.
- 2) In figure in a circle with centre O, length of chord AB is equal to the radius of the circle. Find measures of each of the following.

(ii) ∠ACB

(iii) arc AB

(iv) m (arc ACB)
