CODE: A-G817102-UI-NEW

I SEMESTER EXAM - 2019-20

 4×1550

Std.: X

Sub. : MATHS-II

Marks: 40

Date:

Roll No. _____

Time:

Q.1 A) Select the correct alternative answer and write it.

4

1) A circle touches all sides of the parallelogram. So the parallelogram must be a

a) rectangle

b) rhombus

c) square

- d) trapezium
- 2) If $\triangle ABC \sim \triangle DEF$ and $\angle A = 45^{\circ}$, $\angle E = 87^{\circ}$, then $\angle C =$
- = 87° then C =

a) 45°

b) 87°

c) /48°

d) cannot be determined

3) What is the length of a diagonal of square of side 10 cm?

a) $10\sqrt{2} cm$

b) 10 cm

c) $5\sqrt{2} cm$

d) $10\sqrt{3} \, cm$

4) The number of tangent that can be drawn to a circle at a point on the circle is

a) 1

b) 3

c) 2

d) infinite

B) Solve the following sub-questions.

1

1) If $\triangle ABC \sim \triangle XYZ$ then complete the following boxes.

$$\frac{AB}{XY} = \frac{\Box}{YZ} = \frac{AC}{\Box}$$

- 2) In the right angled triangle, sides making right angle are 9 cm and 12 cm. Find the length of the hypotenuse.
- 3) Two circles of radii 5.5 cm and 4.2 cm touch each other externally. Find the distance between their centres.
- 4) Draw a segment AB of length 6 cm and bisect it.

Q.2 A) Complete the following activities: (any two)

1) In the adjoining figure

BP
$$\perp$$
 AC, CQ \perp AB,

$$A-P-C$$
, $A-Q-B$,

then prove that

 \triangle APB and \triangle AQC are similar.

Solution: In ΔAPB and ΔAQC

$$\angle APB = \boxed{\boxed{}}^{\circ} \dots (I)$$

8

2) Complete the following activity to prove "Tangent segments drawn from an external point to a circle are congruent.

 \underline{Proof} : In ΔPAD and ΔQAD

Seg PA ≅ radii of the same circle

 $\operatorname{Seg} \operatorname{AD} \cong \operatorname{Seg} \operatorname{AD} \dots$

 $\angle APD \cong \angle AQD = 90^{\circ}$ tangent theorem

∴ ΔPAD ≅ ΔQAD

∴ Seg DP ≅ Seg c.s.c.t

B) Solve the following questions. (any four)

- 1) In isosceles right angled $\triangle ABC$, hyp AC = 8. Find the l(AB) and l(BC).
- 2) In the given figure, ray PQ touches the circle at point Q.PQ = 12, PR = 8, Find PS
- 3) In $\triangle ABC$, $\angle B = 90^{\circ}$, $\angle A = 30^{\circ}$, AC = 14, then find AB and BC

- 4) Secants AB and CD are intersecting in the point Q.
 m(arc AD) = 25° and m(arc BC) = 36°.
 Find ∠BQC
- 5) In \triangle MNP, NQ is a bisector of \angle N If MN = 5; PN = 7, MQ = 2.5 then Find QP.

Q.3 A) Complete the following activities: (any one)

1) In example small letters are shows the length of sides, complete the activity for prove the given triangle are right angled triangle

∴ The given triangle is triangle

2) In the figure,

$$PM = 10 cm,$$

 $A (\Delta PQS) = 100 \text{ sq.cm},$

A ($\triangle QRS$) = 110 sq.cm then

Find NR.

Solution:

$$\frac{A\left(\Delta PQS\right)}{A\left(\Delta QRS\right)} = \boxed{\boxed{}}$$

--- Bases are equal

$$\therefore \frac{\boxed{10}}{\boxed{NR}} = \frac{10}{NR}$$

$$\therefore NR = \frac{110}{100}$$

$$\therefore$$
 NR =

B) Solve the following questions: (any two)

1) In a right angled Δ ,

Given : In $\triangle ABC$,

 $\angle ABC = 90^{\circ}$, then

to prove : $AC^2 = AB^2 + BC^2$

- 2) Draw a circle with radius 4.1 cm. Construct tangents to the circle from a point at a distance 7.3 cm from the centre.
- 3) In $\triangle ABC$ seg AP is a medium. If BC = $18 AB^2 + AC^2 = 260$. Find AP.
- 4) In the given figure,

Seg EF is a diameter

and Seg DF is a

tangent segment.

The radius of the circle is 'r'.

Prove that $DE \times GE = 4r^2$.

P.T.O.

6

 $\mathbf{3}$

Solve the following sub-questions: (any two) **Q.4**

Std.: X

1) In trapezium ABCD, side AB || side DC, diagonal AC and BD intersect in point O. If AB = 20, DC = 6, OB = 15, then find OD.

- 2) \triangle SHR ~ \triangle SVU. In \triangle SHR , SH = 4.5 cm, HR = 5.2 cm, SR = 5.8 cm and then draw \triangle SVU.
- 3) In the given figure, in a circle with centre O, length of chord AB is equal to radius of the circle. Find measure of each of the following
 - 1) ∠AOB
- 2) ∠ACB
- 3) m(arc AB) 4) m(arc ACB)

$\mathbf{Q.5}$ Attempt any one:

1) In the figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle Seg PQ | Seg DE. Seg QR || Seg EF.

Prove : Seg PR || Seg DF. 2) In figure,

A - D - Cand B - E - CSeg DE || Side AB. If AD = 5, DC = 3,

BC = 6.4 then find BE.

Sub: MATHS-II