

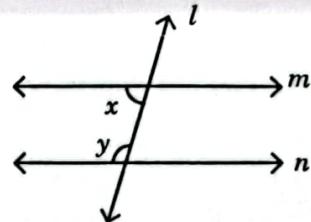
Q.1 A) Choose the correct alternative answer and fill in the blanks. 4

1) If all pairs of adjacent sides of a quadrilateral are congruent, then it is called as _____
 A) Rectangle B) Parallelogram C) Trapezium D) Rhombus

2) In $\triangle ABC$, $\angle A = 76^\circ$, $\angle B = 48^\circ$, $\angle C = ?$
 A) 66° B) 56° C) 124° D) 28°

3) Find $d(A, B)$ if the co-ordinates of A and B are -2 and 5 respectively.
 A) -2 B) 5 C) 7 D) 3

4) In a right angled triangle $30^\circ - 60^\circ - 90^\circ$ if the measure of hypotenuse is 15 cm the measure of side opposite to 30° is _____
 A) 12 B) 7.5 C) 6 D) $6\sqrt{3}$

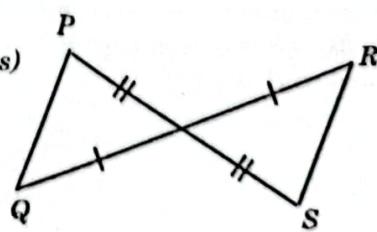

Q.1 B) Solve the following sub-questions : 4

1) Write the following statements in 'if - then' form :
 "The opposite angles of a parallelogram are congruent."

2) If $\triangle XYZ \sim \triangle LMN$, write the corresponding angles of the two triangles and also write the ratios of the corresponding sides.

3) Draw Seg AB of length 7 cm and bisect it.

4) In the figure,
 $y = 108^\circ$ and $x = 71^\circ$
 Are the lines m and n parallel ? Justify ?


Q.2 A) Complete any TWO of the following activities. 4

1) Point P is the midpoint of Seg CD. If $CD = 8\text{ cm}$, find $l(CP)$.

Soln :- $l(CD) = \boxed{\quad}$ (Given)
 $l(CD) = 2 \times \boxed{\quad}$ (P is the midpoint of Seg CD)
 $\therefore 8 = 2 \times l(CP)$
 $\therefore \boxed{\quad} = l(CP)$
 $\therefore l(CP) = \boxed{\quad}$

2) From the information shown in the figure, in $\triangle PTQ$ and $\triangle STR$

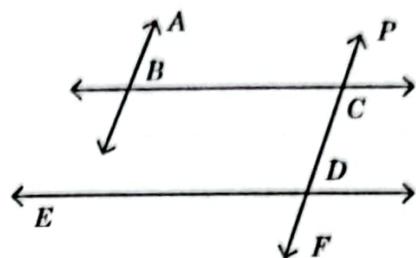
$\text{Seg } PT \cong \text{Seg } ST$
 $\angle PTQ \cong \angle STR$ (Vertically opposite angles)
 $\text{Seg } TQ \cong \text{Seg } TR$
 $\therefore \triangle PTQ \cong \triangle STR$ $\boxed{\quad}$ test
 $\therefore \angle TPQ \cong \boxed{\quad}$ (c.a.c.t)
 and $\boxed{\quad} \cong \angleTRS$
 $\text{Seg } PQ \cong \boxed{\quad}$ (c.s.c.t)

3) In the figure, if Line $AB \parallel$ Line CF and Line $BC \parallel$ Line ED , then prove that $\angle ABC = \angle FDE$.

PROOF : Line $AB \parallel$ Line CF (Given)

and Line BC is the transversal

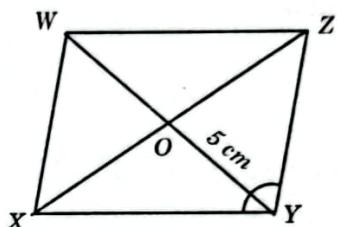
$$\therefore \angle ABC \cong \boxed{\quad} \quad \dots \dots \boxed{\quad} \dots (1)$$


Line $BC \parallel$ Line DE

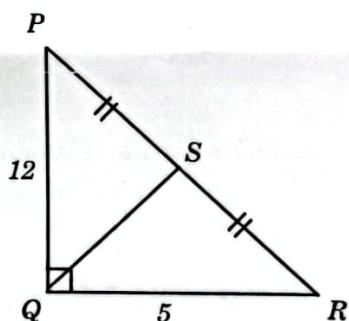
and Line PF is the transversal,

$$\therefore \boxed{\quad} \cong \angle FDE \quad \dots \dots \boxed{\quad} \dots (2)$$

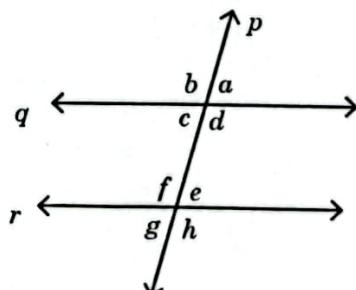
$$\therefore \angle ABC \cong \angle FDE \quad \dots \text{(from (1) and (2))}$$


$$\therefore \angle ABC \cong \angle FDE$$

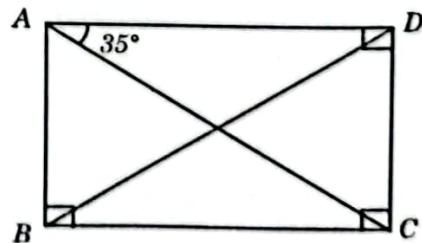
Q.2 B) Solve any FOUR sub-questions from the following.


8

1) Diagonals of a parallelogram $WXYZ$ intersect each other at point O . If $\angle XYZ = 135^\circ$, then what is the measure of $\angle XWZ$ and if $l(OY) = 5 \text{ cm}$, then $l(WY) = ?$



2) Draw $\angle ABC = 120^\circ$ and bisect it.


3) In $\triangle PQR$, $\angle Q = 90^\circ$, $PQ = 12$, $QR = 5$ and QS is a median find $l(QS)$.

4) In the figure, if Line $q \parallel$ Line r , Line p is their transversal if $a = 80^\circ$, find the values of f and g .

5) The diagonals of a rectangle $ABCD$ intersect at point O . If $AC = 8 \text{ cm}$, then find BO and if $\angle CAD = 35^\circ$ then find $\angle ACB$.

Q.3 A) Complete any ONE of the following activity.

3

1) In the figure, measure of some angles are given using the measures. Find the values of x , y , z .

Soln : $\angle TEN + \angle NEM = 180^\circ$ $\boxed{\quad}$

$$\therefore 100^\circ + y = 180^\circ$$

$$\therefore y = 180^\circ - \boxed{\quad}$$

$$\therefore y = 80^\circ$$

$$\angle EMR + \boxed{\quad} = 180^\circ \quad \dots \dots \text{(Angles in a linear pair)}$$

$$\therefore 140^\circ + z = 180^\circ$$

$$\therefore z = 180^\circ - 140^\circ$$

$$\therefore z = \boxed{\quad}$$

In $\triangle NEM$,

$$x + y + \boxed{\quad} = 180^\circ \quad \dots \dots \text{(The sum of the measures of all angles of a triangle is } 180^\circ)$$

$$\therefore x + 80^\circ + 40^\circ = 180^\circ$$

$$\therefore x + \boxed{\quad} = 180^\circ$$

$$\therefore x = 180^\circ - 120^\circ$$

$$\therefore x = 60^\circ$$

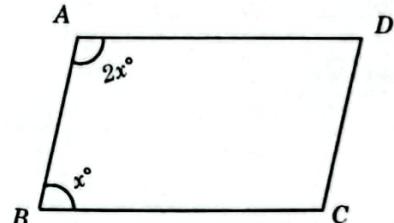
2) If the ratio of measures of two adjacent angles of a parallelogram is $1 : 2$, find the measures of all angles of the parallelogram.

Let $\square ABCD$ be required parallelogram

Soln : The ratio of measures of two adjacent angles of a parallelogram is $1 : 2$

Let the common multiple of the ratio be x .

Then $\angle B = x^\circ$, $\angle A = \boxed{\quad}$


Adjacent angles of a parallelogram are supplementary

$$\therefore \angle A + \angle B = \boxed{\quad}$$

$$\therefore 2x + x = 180$$

$$\therefore \boxed{\quad} = 180$$

$$\therefore x = \frac{180}{3}$$

$$\therefore x = \boxed{\quad}$$

$\angle B = \angle D = x^\circ$ (Opposite angles of a parallelogram)

$$\therefore \angle B = \boxed{\quad} = 60^\circ$$

$\angle C = \angle A = 2x^\circ$ (Opposite angles of a parallelogram)

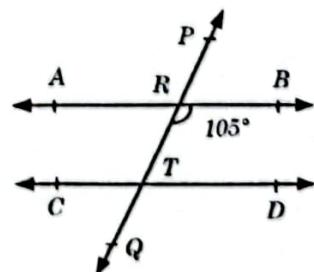
$$\angle C = \angle A = 2(60^\circ)$$

$$\therefore \angle C = \angle A = \boxed{\quad}$$

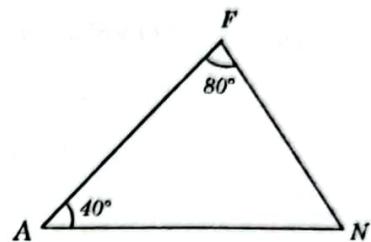
Q.3 B) Solve any Two of the following sub-questions.

6

1) In the figure, Line $AB \parallel$ Line CD and Line PQ is the transversal.

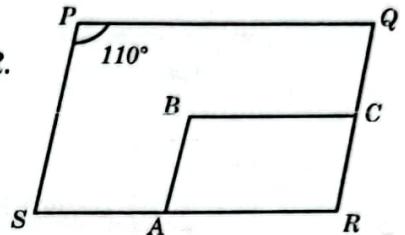

Measure of one of the angle is given.

Hence, find the measures of the following angles.


i) $\angle ART$

ii) $\angle CTQ$

iii) $\angle DTQ$



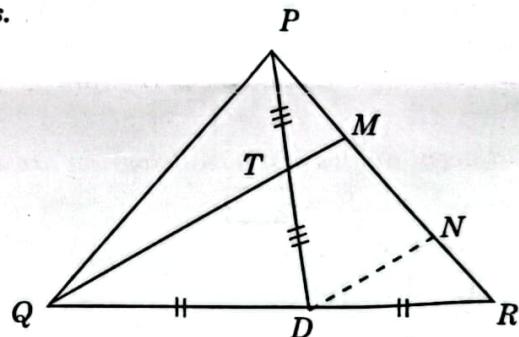
2) In $\triangle FAN$, $\angle F = 80^\circ$, $\angle A = 40^\circ$ find $\angle N$ and find out the greatest and the smallest side of the triangle.

3) Construct $\triangle XYZ$, in which $YZ = 6 \text{ cm}$. $XY + XZ = 9 \text{ cm}$, $\angle XYZ = 50^\circ$.

4) In the figure, $\square PQRS$ and $\square ABCR$ are two parallelograms, If $\angle P = 110^\circ$ then find the measures of all angles of $\square ABCR$.

Q.4 Solve any TWO of the following sub-questions.

1) Construct $\triangle PQR$ in which $\angle Q = 70^\circ$, $\angle R = 80^\circ$ and $PQ + QR + PQ = 9.5 \text{ cm}$.


2) Prove that "If two sides of a triangle are congruent, then the angles opposite to them are congruent."

3) The perimeter of a parallelogram is 150 cm. One of its sides is greater than the other side by 25 cm. Find the lengths of all sides.

Q.5 Solve any ONE of the following questions.

1) In the figure, Seg PD is a median of $\triangle PQR$.
Point T is the midpoint of Seg PD .
 QT produced intersects PR at M .

$$\text{Show that } \frac{PM}{PR} = \frac{1}{3}$$

2) Construct $\triangle XYZ$ such that $YZ = 7.4 \text{ cm}$, $\angle XYZ = 45^\circ$ and $XY - YZ = 2.7 \text{ cm}$.
